When solving for the gross risk-free interest rate parameter R a Hopf bifurcation occurs given the parameter set {Θ} \ R if RH satisfies

RH=
2 a γ σ2
λ


1-(1-µ)
v
R



qma
qfund
.
Because R>1, there are possibly cases for which no Hopf bifurcation occurs, when varying R and keeping the other parameters constant.

When solving the first condition for the fundamental belief parameter v a Hopf bifurcation occurs given the parameter set {Θ} \ v if vH satisfies

vH=
R
1-µ



1-
2 a γ σ2
λ R
qma
qfund



.
Again however, because 0 ≤ v ≤ 1, there are cases for which no Hopf bifurcation occurs, when varying v and keeping the other parameters constant.

When solving the first condition for the exponential moving average parameter µ a Hopf bifurcation occurs given the parameter set {Θ} \ µ and v>0 if µH satisfies

µH=1-
R
v
+
2 a γ σ2
λ v
qma
qfund
,
and where v should additionally satisfy 0<v≤ 1. Now also, because 0 < µ < 1, there are cases for which no Hopf bifurcation occurs, when varying µ and keeping the other parameters constant.

When solving for the moving average belief parameter γ a Hopf bifurcation occurs given the parameter set {Θ} \ γ if γH satisfies

γH=


1-(1-µ)
v
R



λ R
2 a σ2
qfund
qma
>0 .

When solving for the moving average belief parameter λ a Hopf bifurcation occurs given the parameter set {Θ} \ λ if λH satisfies
λH=
2 a γ σ2
R


1-(1-µ)
v
R



qma
qfund
>0.

Hence when one of the parameters a, σ2, γ or λ is varied while keeping the other parameters constant, a Hopf bifurcation always arises for some parameter value.

If the Jacobian matrix of Φ at the steady state z has two complex conjugate eigenvalues, ξ1=c+di and ξ2=c-di, then the price series, and therefore also the exponential moving average series, follows a wavelike pattern. For fluctuation close to the steady state the period of the wave is approximately equal to
2 π
θ
, where tan(θ)=
d
c
, with c>0,
263