complex conjugate of modulus 1 if ξ1 ξ2=1 and |ξ1+ξ2|<2. Using (6.43) this leads to the conditions
| (1-µ) |
|
+ |
|
|
= 1 and |1-µ + |
|
+ |
|
|
|<2. (46) |
| |2-µ |
⎛ ⎜ ⎜ ⎝ |
1- |
|
⎞ ⎟ ⎟ ⎠ |
|<2. |
When solving the first condition for the risk aversion parameter a a Hopf bifurcation occurs given the parameter set {Θ} \ a if aH satisfies
| aH= |
⎛ ⎜ ⎜ ⎝ |
1-(1-µ) |
|
⎞ ⎟ ⎟ ⎠ |
|
|
>0 . |
When solving the first condition for the intensity of choice parameter β a Hopf bifurcation occurs given the parameter set {Θ} \ β and Cfund>Cma if βH satisfies
| βH= |
|
ln(c), |
| c= |
|
,with b= |
⎛ ⎜ ⎜ ⎝ |
⎛ ⎜ ⎜ ⎝ |
1-(1-µ) |
|
⎞ ⎟ ⎟ ⎠ |
|
⎞ ⎟ ⎟ ⎠ |
>0. |
When solving the first condition for the memory parameter η a Hopf bifurcation occurs given the parameter set {Θ} \ η if ηH satisfies
| ηH=1- |
|
. |
When solving for the expected dispersion in return parameter σ2 a Hopf bifurcation occurs given the parameter set {Θ} \ σ2 if σH2 satisfies
| σH2= |
⎛ ⎜ ⎜ ⎝ |
1-(1-µ) |
|
⎞ ⎟ ⎟ ⎠ |
|
|
>0 . |
262