and-hold benchmark also after a correction is made for data snooping. Tests utilized to correct for data snooping are White's (2000) Reality Check (RC) and Hansen's (2001) test for superior predictive ability (SPA). Finally, it is tested with a recursively optimizing and testing method whether technical trading shows true out-of-sample forecasting power. For example, recursively at the beginning of each month the strategy with the highest performance during the preceding six months is selected to generate trading signals in that month.
In Chapter 3 a set of 787 trend-following technical trading rules is applied to the Dow-Jones Industrial Average (DJIA) and to 34 stocks listed in the DJIA in the period January 1973 through June 2001. Because numerous research papers found that technical trading rules show economically and statistically significant forecasting power in the era until 1987, but not in the period thereafter, we split our sample in two subperiods: 1973-1986 and 1987-2002. For the mean return as well as the Sharpe ratio selection criterion it is found that in all periods for each data series a technical trading rule can be found that is capable of beating the buy-and-hold benchmark, even if a correction is made for transaction costs. Furthermore, if no transaction costs are implemented, then for most data series it is found by estimating Sharpe-Lintner CAPMs that technical trading generates risk-corrected excess returns over the risk-free interest rate. However, as transaction costs increase the null hypothesis that technical trading rule profits are just the reward for bearing risk is not rejected for more and more data series. Moreover, if as little as 0.25% transaction costs are implemented, then the null hypothesis that the best technical trading strategy found in a data set is not superior to the buy-and-hold benchmark after a correction is made for data snooping, is neither rejected by the RC nor by the SPA-test for all data series examined. Finally, the recursive optimizing and testing method does not show economically and statistically significant risk-corrected out-of-sample forecasting power of technical trading. Thus, in this chapter no evidence is found that trend-following technical trading rules can forecast the direction of the future price path of the DJIA and stocks listed in the DJIA.
In Chapter 4 the same technical trading rule set is applied to the Amsterdam Stock Exchange Index (AEX-index) and to 50 stocks listed in the AEX-index in the period January 1983 through May 2002. For both selection criteria it is found that for each data series a technical trading strategy can be selected that is capable of beating the buy-and-hold benchmark, also after correction for transaction costs. Furthermore, by estimating Sharpe-Lintner CAPMs it is found for both selection criteria in the presence of 1% transaction costs that for approximately half of the data series the best technical trading strategy has statistically significant risk-corrected forecasting power and even re-