6.3.5 The dynamical system
Using equations (6.36), (6.25) and (6.52) and setting
MAt=
MAt-1 and
Fth=
Ft-1h the following dynamical system for
s=0 is obtained
- 0.1cm
Pt(Pt-1, MAt-1, Ftfund, Ftma);
- MAt=µ Pt-1 + (1-µ) MAt-1;
- Fth=rF + yt-2h (rt-1P-rF) + η Ft-1h, for h=(fund, ma).
Introducing new variables
Pi,t-1=
Pt-i and
MAi,t-1=
MAt-i the following eight dimensional dynamical system is derived from the above equations
- 0.1cm
P1,t=qtfund/qtfund R - a σ2 qtMA ytMA (P*+v(P1,t-1-P*)+D);
- P2,t=P1,t-1;
- P3,t=P1,t-2=P2,t-1;
- MA1,t=µ P1,t-1 + (1-µ) MA1,t-1;
- MA2,t=MA1,t-1;
- MA3,t=MA1,t-2=MA2,t-1;
- Ftfund=rF + yt-2fund (P1,t-1+Dt-1/P2,t-1-R)- Cfund + η Ft-1fund;
- Ftma=rF + yt-2ma (P1,t-1+Dt-1/P2,t-1 -R)- Cma + η Ft-1ma,
where
- 0.1cm
Dt=D+δt; δt ~ N(0, σδ2);
- P*=D/rF;
- qtma=1-qtfund , qtfund=mfund+(1-mfund-mma) qtfund,
- qtfund=exp(β Ftfund)/exp(β Ftfund)+exp(β Ftma);
- ytma=2 γ xt-1/1+xt-12 , xt-1=1/λP1,t-1- MA1,t-1/MA1,t-1;
- yt-2fund=1/Pt-2(P*+v(Pt-3-P*)+D)-R/a σ2=1/P2,t-1(P*+v(P3,t-1-P*)+D)-R/a σ2;
255