6.3.5  The dynamical system

Using equations (6.36), (6.25) and (6.52) and setting MAt=MAt-1 and Fth=Ft-1h the following dynamical system for s=0 is obtained
  • 0.1cm Pt(Pt-1, MAt-1, Ftfund, Ftma);
  • MAtPt-1 + (1-µ) MAt-1;
  • Fth=rF + yt-2h (rt-1P-rF) + η Ft-1h, for h=(fund, ma).
Introducing new variables Pi,t-1=Pt-i and MAi,t-1=MAt-i the following eight dimensional dynamical system is derived from the above equations
  • 0.1cm P1,t=qtfund/qtfund R - a σ2 qtMA ytMA (P*+v(P1,t-1-P*)+D);
  • P2,t=P1,t-1;
  • P3,t=P1,t-2=P2,t-1;
  • MA1,tP1,t-1 + (1-µ) MA1,t-1;
  • MA2,t=MA1,t-1;
  • MA3,t=MA1,t-2=MA2,t-1;
  • Ftfund=rF + yt-2fund (P1,t-1+Dt-1/P2,t-1-R)- Cfund + η Ft-1fund;
  • Ftma=rF + yt-2ma (P1,t-1+Dt-1/P2,t-1 -R)- Cma + η Ft-1ma,
where
  • 0.1cm Dt=Dt; δt ~ N(0, σδ2);
  • P*=D/rF;
  • qtma=1-qtfund , qtfund=mfund+(1-mfund-mma) qtfund,
  • qtfund=exp(β Ftfund)/exp(β Ftfund)+exp(β Ftma);
  • ytma=2 γ xt-1/1+xt-12 , xt-1=1/λP1,t-1- MA1,t-1/MA1,t-1;
  • yt-2fund=1/Pt-2(P*+v(Pt-3-P*)+D)-R/a σ2=1/P2,t-1(P*+v(P3,t-1-P*)+D)-R/a σ2;
    255