being significant. Without correcting for heteroskedasticity we find for 35 of the 51 indices a significant first order autocorrelation both in local and US currency, while when corrected for heteroskedasticity we find for 30 (23) indices measured in local (US) currency a significant first order autocorrelation at the 10% significance level. It is noteworthy that for more than half of the indices the second order autocorrelation is negative. In contrast, the first order autocorrelation is negative for only 5 (10) indices in local (US) currency. The Ljung-Box (1978) Q-statistics in the second to last columns of tables 5.1 and 5.2 reject for almost all indices the null hypothesis that the first 20 autocorrelations of the returns as a whole are equal to zero. For only 3 (5) indices the null is not rejected in the local (US) currency case, see for example New Zealand's NZSE30 and the Finnish HEX. When looking at the first to last column with Diebold's (1986) heteroskedasticity-consistent Box-Pierce (1970) Q-statistics it appears that heteroskedasticity indeed seriously affects the inferences about serial correlation in the returns. Now for 26 (34) indices the null of no autocorrelation is not rejected in the local (US) currency case. The autocorrelation functions of the squared returns show that for all indices the autocorrelations are high and significant up to order 20. The Ljung-Box (1978) statistics reject the null of no autocorrelation in the squared returns firmly, except for the Venezuela Industrial if expressed in US Dollars. Hence, almost all indices exhibit significant volatility clustering, that is large (small) shocks are likely to be followed by large (small) shocks.